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Abstract
We review some recent results concerning the Hartle-Hawking wavefunction of the universe. We focus on
pure Einstein theory of gravity in the presence of a positive cosmological constant. We carefully implement
the gauge-fixing procedure for the minisuperspace path integral, by identifying the single modulus and by
using diffeomorphism-invariant measures for the ghosts and the scale factor. Field redefinitions of the scale
factor yield different prescriptions for computing the no-boundary ground-state wavefunction. They give
rise to an infinite set of ground-state wavefunctions, each satisfying a different Wheeler-DeWitt equation,
at the semi-classical level. The differences in the form of the Wheeler-DeWitt equations can be traced to
ordering ambiguities in constructing the Hamiltonian upon canonical quantization. However, the inner
products of the corresponding Hilbert spaces turn out to be equivalent, at least semi-classically. Thus, the
model yields universal quantum predictions.
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1. INTRODUCTION
The inflationary universe scenario [1, 2, 3] has been very successful in accounting for key cosmological puzzles of the hot Big Bang
model, such as the flatness, the horizon and monopole problems, and in generating the primordial fluctuations that eventually
led to the large scale structure observed today [4]. Furthermore, inflation has gained support by observational data concerning the
anisotropies in the cosmic microwave background radiation. Despite the many successes however, there are still open questions
regarding the UV completion of inflationary models and a lack of understanding of the initial conditions from first principles. To
date there is no complete embedding of phenomenologically viable inflationary models in string theory.1 We also lack of a definite
understanding of how the Universe could have entered naturally into such an inflationary phase in the early past. It is likely that
a quantum, probabilistic explanation exists, in terms of a wavefunction that favors suitable conditions to initiate inflation. See e.g.
[6, 7, 8, 9, 10, 11, 12, 13, 14, 15] for different perspectives and discussions.

A very appealing possibility to explore is to apply the no-boundary proposal of Hartle and Hawking [7]. In this context, the
wavefunction of the universe is computed via a Euclidean path integral over all compact four-geometries that end on a particular
spatial slice. The induced metric on this slice and the value of the inflaton field are fixed to be hij and φ0, respectively. The four-
geometries summed over should have no boundaries other than that of metric hij. As a result the wavefunction is expressed as
a functional of hij and φ0. We refer to this wavefunction as the “ground state” wavefunction, even though such a denomination
may not be appropriate since in quantum gravity all physical quantum states associated with a closed universe are annihilated by
the Hamiltonian. In fact, the Hartle-Hawking wavefunction can be interpreted as a probability amplitude to create from nothing a
three-dimensional universe with metric hij and inflaton field φ0 [8, 9, 10, 11, 13]. As argued by Vilenkin [8, 9, 10, 11, 13] and also by
Linde [12, 16] some time ago, a suitable continuation to Euclidean time yields probability amplitudes favoring inflation.

In this work we revisit the Hartle-Hawking no-boundary proposal in the context of pure Einstein’s theory of gravity with
a positive cosmological constant Λ > 0. Our goal is to discuss a number of issues pertaining to this path integral approach to
quantum cosmology in a rather simpler setting, before delving into analyzing more complex cosmological models in the presence of
matter (including inflationary ones). Indeed, in the minisuperspace approximation, where the universe is taken to be homogeneous
and isotropic, the degrees of freedom reduce to a single scale factor depending only on time. The issues we would like to discuss
were recently raised in [17], in the context of the minisuperspace approximation, and concern i) the proper gauge fixing of the
local symmetry group associated with time-reparametrization invariance; ii) the construction of an infinite set of “ground state”
wavefunctions based on field redefinitions of the scale factor degree of freedom; iii) the derivation of the corresponding Wheeler-
DeWitt equations [6]; and finally, iv) the equivalence of these prescriptions at the semiclassical level and observable predictions.
To our knowledge, these points have not been adequately addressed in the literature before. We believe they will prove to be
important in properly applying the no-boundary proposal to obtain probabilities in cosmological, inflationary settings.2

1See e.g. [5] for seminal work towards this end.
2Previous work on the Hartle-Hawking wavefunction, related to our discussions but with some different results, includes [18, 19, 20]. Further work and applications

can be found in [21, 22, 23, 24, 25, 26, 27].
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To illustrate these issues, it is convenient to interpret the minisuperspace model as a non-linear sigma model, where the Eu-
clidean time parameterizes the base manifold, which is a line segment. The scale factor parameterizes a one-dimensional target
space, which is a half line.

The theory is invariant under time-reparametrizations of the base manifold. In section 2, we implement the gauge fixing pro-
cedure of Euclidean-time reparameterizations. The path integral over the lapse function reduces to an integral over the modulus
of the base manifold, which can be identified to be the proper length of the line segment. We express the Faddeev-Popov deter-
minant as a path integral over anticommuting ghost fields, and compute it to be a constant, independent of the modulus of the
line segment. It is important to use gauge invariant measures in both the ghost and scale factor path integrals to implement the
gauge-fixing properly.

Field redefinitions of the scale factor, a = A(q), amount to reparameterizations of the target space and leave the classical sigma
model action invariant. At the quantum level, the path integral measures Da and Dq are not equivalent in general, since they
are related by a non-trivial Jacobian. Since there is no preferred choice, an infinite number of ground-state wavefunctions can be
constructed, upon implementing the no-boundary proposal (based on the different measures Dq). In section 3, we compute the
ground-state wavefunction for each choice of Dq, using the steepest-descent method, expanding around instanton solutions to
quadratic order. The path integral over the fluctuations are obtained by applying the methods of Ref. [28]—see also [29].

We proceed in section 4 to determine the Wheeler-DeWitt equation each ground state wavefunction satisfies. Recall that there
is an ambiguity in the exact form of the Wheeler-DeWitt equation, due to an ordering ambiguity of q and its conjugate momentum
πq in the quantum Hamiltonian. For each Dq, we resolve this ambiguity in the Wheeler-DeWitt equation by comparing with
solutions via the WKB approximation. The inner product in each case is determined by imposing hermiticity of the corresponding
Hamiltonian. Despite the fact that the precise form of the inner product depends on the choice Dq, the norms of the wavefunctions
at the semiclassical level turn out to be the same, leading to universal predictions, independent of the Dq prescription. For the
particular model at hand, the norm of the wavefunctions turns out to be logarithmically divergent. At best, these wavefunctions
can be used to discuss relative probabilities. We conclude in section 5 with further discussion and perspectives. Throughout we
work in Planck units, setting Mp =

√
8πG = 1.

2. THE GROUND-STATE WAVEFUNCTION AS A GAUGE FIXED PATH INTEGRAL
The Lorentzian theory is formulated on four-manifolds with space-like boundaries at initial and final times. The slices at constant
time x0 are taken to be compact and closed. In the minisuperspace approximation, these slices are restricted to be homogeneous
and isotropic 3-spheres. As a result, the physical degrees of freedom reduce to to a single scale factor depending on time, a(x0).
The

metric is given by
ds2 = −N(x0)2(dx0)2 + a(x0)2 dΩ2

3 , (2.1)

where N(x0) ≡
√

g00(x0) is the lapse function and dΩ3 is the volume element of the unit 3-sphere of volume v3 = 2π2. Einstein’s
action, in the presence of a non-zero positive cosmological constant Λ, takes the form

S = 3v3

∫ x0
f

x0
i

dx0 N
[
− a

N2

( da
dx0

)2
+ a− λ2a3

]
, where λ =

√
Λ
3

. (2.2)

The classical equations of motion can be obtained by varying the action, keeping the scale factor at initial and final times, x0
i and

x0
f , fixed.3

Notice that the kinetic energy term of the scale factor has a negative sign compared to that of a conventional matter scalar field.
This fact motivates us to consider two alternative prescriptions for the continuation to Euclidean time,

x0 = s i x0
E , where s ∈ {1,−1} , (2.3)

both of which have been advocated in the literature. Hartle and Hawking [7] adopt the conventional prescription s = −1. In this
case, the no-boundary wavefunctions become large as λ→ 0, and so they seem to favor a vanishing cosmological constant [14]. On
the other hand, Vilenkin [8, 9, 10, 11, 13] and Linde [12, 16] have argued for s = +1, which favors conditions amenable for inflation.
The Euclidean action SE = −iS in each case is given by

SE[g00, a] = 3sv3

∫ x0
Ef

x0
Ei

dx0
E
√

g00

[
a g00

( da
dx0

E

)2
+ V(a)

]
, (2.4)

where
V(a) = a− λ2a3 . (2.5)

This potential becomes negative when λa > 1. When s = −1, the action can become arbitrarily large and negative due to rapidly
oscillating configurations of the scale factor. On the other hand, for s = 1, there are time-independent configurations, satisfying

3The boundary action cancels upon integrating by parts a bulk term that involves the second derivative of the scale factor, see e.g. [17] for details.
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λa � 1, that yield arbitrarily large negative values for the action. We see that both choices yield Euclidean actions, which are not
bounded from below, and thus a suitable continuation will be needed to obtain convergent path integrals.

Based on the form of the action SE, we interpret the theory as a non-linear σ-model. The base manifold is a line segment of
metric g00, parameterized by the Euclidean time x0. The one-dimensional target space is parameterized by the scale factor a. The
metric is given by

Gaa = 6v3a . (2.6)

The local symmetry group consists of Euclidean-time diffeomorphisms of the base manifold. Under such a coordinate change, the
metric g00 transforms as a tensor and the scale factor as a scalar:

ξ(x0
E) = xξ0

E , gξ
00(xξ0

E ) =

(
dx0

E

dxξ0
E

)2

g00(x0
E) , aξ(xξ0

E ) = a(x0
E) . (2.7)

In addition, the action is invariant under field redefinitions of the scale factor, a = A(q), which can be interpreted as reparameteri-
zations of the target space.

In order to implement the no-boundary proposal, we take the initial boundary 3-sphere to have vanishing radius,
a(x0

Ei) ≡ ai = 0, and fix the radius of the final sphere to an arbitrary value: a(x0
Ef) ≡ af = a0. We then define the ground-state

wavefunction to be given by the following Euclidean path integral [7]

Ψ(a0) =
∫ Dg00

Vol(Diff[g00])

∫
ai = 0, af = a0

Da e−
1
h̄ SE[g00,a] , (2.8)

where we kept explicit the reduced Planck constant h̄. According to Vilenkin, the wavefunction thus defined can be interpreted as
the probability amplitude for creating a 3-dimensional spherical universe of radius a0 from nothing [8, 9, 10, 11]. Notice that we
have divided the measure Dg00 in the path integral by the volume of the local symmetry group, Vol(Diff[g00]), in order to take
care of the overcounting of physical configurations, yielded by diffeomorphism-equivalent metrics g00. The measure Da must be
invariant under Euclidean-time diffeomorphisms. Such a gauge-invariant measure, however, is far from being unique. As we will
see later on, field redefinitions of the scale factor provide us with an infinite set of inequivalent diffeomorphism-invariant measures,
Dq, leading to an infinite set of alternative definitions for the ground state wavefunction.

We proceed now to discuss the gauge-fixing procedure, which allows us to express the wavefunction Eq. (2.8) as an integral
over physically distinct configurations. First notice that not all metrics g00 are diffeomorphism-equivalent, since the proper length
` of the line segment remains invariant under such transformations

` =
∫ xEf

xEi

dx0
E
√

g00 =
∫ ξ(xEf)

ξ(xEi)
dxξ0

E

√
gξ

00 . (2.9)

Thus, the proper length ` behaves as a modulus, and its value can be used to distinguish the classes of diffeomorphism-equivalent
metrics. In [17] we show that the line segment has no other moduli than the proper length `. Let ĝ00[1], defined on a domain
[x̂0

Ei, x̂0
Ef], be a fiducial metric representing the class ` = 1. Then all the other equivalence classes can be represented by fiducial

metrics of the form ĝ00[`] = `2 ĝ00[1], defined on the same interval [x̂0
Ei, x̂0

Ef].
4

Choosing such a metric ĝ00[`] for each equivalence class, we insert in Eq. (2.8) a gauge fixing condition

1 = ∆FP[g00]
∫ +∞

0
d`
∫

Diff[ĝ00[`]]
Dξ δ

[
g00 − ĝξ

00[`]
]

, (2.10)

where ∆FP[g00] is the Faddeev-Popov determinant, which is gauge invariant. Then integrating over g00 fixes the metric to be ĝξ
00[`]

(defined on [ξ(x̂0
Ei), ξ(x̂0

Ef)]), as implied by the Dirac δ-functional, while integrating over the gauge orbits, together with gauge
invariance, lead to the cancellation of the volume of the local symmetry group Vol(Diff[g00]). The wavefunction simplifies as
follows

Ψ(a0) =
∫ +∞

0
d` ∆FP[ĝ00[`]]

∫
a(x̂0

Ei)=0, a(x̂0
Ef)=a0

Da e−
1
h̄ SE[ĝ00[`],a] , (2.11)

where the integral over the modulus ` is an ordinary integral.
The Faddeev-Popov determinant appearing in the expression above can be related to a path integral over the diffeomorphisms

that are connected to the identity as follows5

1
∆FP[ĝ00[`]]

= 2
∫ +∞

0
d`′

∫
Diff[ĝ00[`′ ]]Id

Dξ δ
[
ĝ00[`]− ĝξ

00[`
′]
]

. (2.12)

4The Killing group of metric isometries reduces to a discrete Z2 group, generated by the transformation that reverses the orientation of the line segment.
5Due to the fact that the orientation reversal is the only Killing isometry, the path integral over all diffeomorphisms is twice the contribution of the diffeomorphisms

connected to the identity.
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To compute it, we first examine the total variation of the metric ĝ00[`] under infinitesimal diffeomorphisms in the vicinity of the
identity and small changes of the modulus field,

δĝ00[`] ≡ ĝId+δξ
00 [`+ δ`]− ĝ00[`] = −2∇̂0δxE0 + 2ĝ00[`]

δ`

`
+ · · · , (2.13)

where ∇̂ is the covariant derivative with respect to ĝ00[`]. Then we introduce anticommuting ghost fields. Two such fields are
needed, c0 corresponding to δxE0 and b00 corresponding to the tensor field β00 needed to express the δ-functional as a Fourier
integral [17]. Moreover, one introduces an anticommuting variable λ corresponding to δ`. Berezin integration over λ yields the
following path integral expression [17]

∆FP[ĝ00[`]] = 2iπα
∫

c0(x̂0
Ei)=0, c0(x̂0

Ef)=0
Dc

∫
Db
(

b,
ĝ[`]
`

)
`

exp
{

4iπ (b, ∇̂c)`
}

, (2.14)

where α is an irrelevant constant and the tensor inner product is given by ( f , h)` ≡
∫ x̂0

Ef

x̂0
Ei

dx̂0
E

√
ĝ00[`] f 00 h00.

The ghost path integrals can be readily computed by expanding the ghost fields in Fourier modes on the interval [x̂0
Ei, x̂0

Ef]. To
achieve this, we must take into account the boundary conditions and use gauge invariant measures—we refer the reader to [17] for
the detailed computations. The Faddeev-Popov determinant turns out to be a constant, independent of the modulus `. This is to
be contrasted with the case of a base manifold with the topology of a circle, where the Faddeev-Popov determinant is non-trivial,
being proportional to 1/`, where ` is the proper length of the circle. As a result the wavefunction further simplifies to the following
gauge-fixed path-integral expression

Ψ(a0) = ∆FP

∫ +∞

0
d`

∫
a(x̂0

Ei)=0, a(x̂0
Ef)=a0

Da e−
1
h̄ SE[ĝ00[`],a] , (2.15)

where ∆FP is an irrelevant constant.

3. SCALE FACTOR PATH INTEGRAL AND FIELD REDEFINITIONS
Next we compute the path integral over the scale factor and the integral over the modulus `. Since the path-integral expression
(2.15) for the wavefunction is gauge invariant, we choose to work in a convenient gauge, setting the lapse function to be a constant,

ĝ00[`](τ) = `2 defined on [x̂0
Ei, x̂0

Ef] = [0, 1] . (3.16)

The Euclidean-time coordinate x̂0
E is denoted by τ. This time variable is proportional to the “cosmological Euclidean time tE,”

which satisfies dtE = `dτ. The wavefunction becomes

Ψ(a0) = ∆FP

∫ +∞

0
d`
∫

a(0)=0, a(1)=a0

Da e−
1
h̄ SE[`2,a] , (3.17)

with the action (2.4) written as

SE[`
2, a] = 3sv3

∫ 1

0
dτ

[
a
`

( da
dτ

)2
+ `V(a)

]
. (3.18)

This action is not quadratic, and so we will approximate the path integral via the method of steepest-descent. To this end, we first
expand the action around its extrema to quadratic order, and then carry out the resulting Gaussian integrals over the fluctuations.
This steepest-descent approximation becomes accurate in the semiclassical limit, where h̄→ 0.

Let us denote an extremum of the action by ( ¯̀2, ā), where we require the solution ā to satisfy the boundary conditions ā(0) = 0
and ā(1) = a0. Varying with respect to the modulus ` gives

0 =
dSE
d`

∣∣∣∣
( ¯̀2,ā)

= 3sv3

∫ 1

0
dτ

[
− ā

¯̀2

( dā
dτ

)2
+ V(ā)

]
, (3.19)

while the equation of motion of the scale factor can be integrated to be

− ā
¯̀2

( dā
dτ

)2
+ V(ā) =

E
3v3

, (3.20)

where E is an arbitrary integration constant. Eq. (3.19) implies 0 = sE , and so it suffices to solve the Friedmann equation in order
to determine the extrema of the action.

It is useful to write the Friedmann equation in the form(
d(λā)

d(λ ¯̀τ)

)2
+ (λā)2 = 1 , (3.21)
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with solution λā(τ) = ± sin(λ ¯̀τ + cst.). The boundary conditions ā(0) = 0, ā(1) = a0 set the constant to be zero and fix the
modulus ¯̀. In this work and in [17], we consider the case

0 < λa0 < 1 , (3.22)

leaving the case λa0 > 1 for future work. Then, there are two real instanton solutions

λāε(τ) = sin(λ ¯̀
ετ) , ε ∈ {+1,−1} ,

where λ ¯̀
+ = arcsin(λa0) , λ ¯̀− = π − arcsin(λa0) , (3.23)

corresponding to parts of a 4-sphere of radius 1/λ. The ε = +1 solution describes a cap smaller than a hemisphere, while the
ε = −1 solution describes a cap bigger than a hemisphere. The instanton actions are given by

S̄ε
E = s

2v3

λ2

[
1− ε

(
1− (λa0)

2) 3
2
]

. (3.24)

We now proceed to expand the action around the extremal solutions. We set

` = ¯̀
ε + δ` , a(τ) = āε(τ) + δa(τ) , (3.25)

where the fluctuation δa(τ) satisfies the boundary conditions δa(0) = 0 and δa(1) = 0. Thus, δa(τ) is an element of the Hilbert
space of square integrable real functions on [0, 1], vanishing at the boundary points. This space of functions is equipped with the
inner product

(δa1, δa2) ¯̀
ε
=
∫ 1

0
dτ ¯̀

ε δa1 δa2 . (3.26)

As a result, δa(τ) can be expanded in terms of the orthonormal sine Fourier series
{√

2/¯̀
ε sin(kπτ), k ∈N∗

}
.

To quadratic order in the fluctuations, the action (3.18) can be written as follows

SE[`
2, a] = S̄ε

E + 3sv3

∫ 1

0
dτ ¯̀

ε

[
δa Sεδa + 2 δa Va(āε)

δ`
¯̀

ε
+

δ`
¯̀

ε
V(āε)

δ`
¯̀

ε

]
+O(δ3) . (3.27)

where the linear operator Sε, given by

Sε = − āε

¯̀2
ε

d2

dτ2 −
1
¯̀2

ε

dāε

dτ

d
dτ
− 2λ2 āε , (3.28)

is self-adjoint with respect to the inner product (3.26): (δa1,Sεδa2) ¯̀
ε
= (Sεδa1, δa2) ¯̀

ε
. Here also, Va ≡ dV/da. Moreover, as will be

seen later on, this operator is invertible when 0 < λa0 < 1, a fact that allows us to diagonalize the integrand in Eq. (3.27). For this
purpose we set6

δa Sεδa + 2 δa Va(āε)
δ`
¯̀

ε
+

δ`
¯̀

ε
V(āε)

δ`
¯̀

ε
= δǎ Sεδǎ +

δ`
¯̀

ε

[
V(āε)−Va(āε)S−1

ε Va(āε)
] δ`

¯̀
ε

,

where δǎ = δa +
δ`
¯̀

ε
S−1

ε Va(āε) . (3.29)

Using Eq. (3.29) and defining

Kε =
∫ 1

0
dτ ¯̀

ε
[
V(āε)−Va(āε)S−1

ε Va(āε)
]

, (3.30)

we obtain the following expression for the wavefunction (3.17) in the steepest-descent approximation,

Ψ(a0) = ∆FP ∑
ε=±1

e−
1
h̄ S̄ε

E Zε(a0)
∫

dδ` exp
{
− 3sv3

h̄
Kε

( δ`
¯̀

ε

)2}
(1 +O(h̄))

where Zε(a0) =
∫

δǎ(0)=0, δǎ(1)=0
Dδǎ exp

{
− 3sv3

h̄
(δǎ,Sεδǎ) ¯̀

ε

}
. (3.31)

The operator Sε is self-adjoint and so it can be diagonalized in an orthonormal basis. Let us denote its eigenvectors by φε
k and

the corresponding eigenvalues by νε
k . These satisfy

Sεφε
k = νε

k φε
k , k ∈N∗ , where (φε

k , φε
k′ ) ¯̀

ε
= δkk′ , νε

k ∈ R . (3.32)

6We consider the odd periodic extension of the function Va(āε) on the real line, so that both δa and δǎ can be expanded in terms of the same sine Fourier series.
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Then we may expand the scale factor fluctuation as

δǎ(τ) = ∑
k≥1

δǎk φε
k(τ) , (3.33)

and use zeta regularization to get

Zε(a0) = ∏
k≥1

∫
dδǎk e−

3sv3
h̄ νε

k (δǎk)
2
= ∏

k≥1

√
h̄ π

3sv3 νε
k

=

(
3sv3
h̄ π

) 1
4 1√

detSε
. (3.34)

In order to define the Gaussian integrals, we have used the following prescription: The Fourier mode δǎk is integrated from −∞
to +∞ when sνε

k > 0, and from −i∞ to +i∞ when sνε
k < 0. There is no vanishing eigenvalue, νε

k = 0, since Sε is invertible (see
below). In fact, detS+ and detS− turn out to have opposite signs, independently of the sign of s. Hence, rotating some contours of
integration along the imaginary axis is necessary for both Z+(a0) and Z−(a0) to exist, irrespectively of the choice of continuation
to Euclidean time.

The determinant of Sε can be computed via the method of Ref. [28]. It is given by

detSε = Nε ϕε
0(1) , (3.35)

where Nε is a universal constant and the function ϕε
0(τ) (to be evaluated at τ = 1) solves the system Sε ϕε

0(τ) = 0 ,

ϕε
0(τε) = 0 ,

dϕε
0

dτ
(τε) = 1 .

(3.36)

Here, τε ∈ (0, 1) is a regulator to be sent to 0 at the end of the calculations. The universal constant Nε can be obtained by finding
the determinant of an operator that is identical to Sε up to terms involving no derivatives. The computations ofNε and ϕε

0(1) have
been carried out in great detail in [17], giving the net result

detSε = 2
( θ∗

λ

) 1
4

ln
1
θ∗
× ε a

1
4
0

√
1− (λa0)2 , (3.37)

where θ∗ = λ ¯̀
ετε is to be sent to zero. Note that

detS+ > 0 , detS− < 0 , when 0 < λa0 < 1 , (3.38)

demonstrating that both S+ and S− are invertible.
The integral over the fluctuation δ` is Gaussian. To evaluate it we need to determine Kε given in Eq. (3.30), which requires

to find the function S−1
ε Va(āε), or equivalently the function fε satisfying Sε fε = Va(āε) along with the boundary conditions

fε(τε) = fε(1) = 0. These yield the following net result [17]

∫
dδ` exp

{
− 3sv3

h̄
Kε

( δ`
¯̀

ε

)2}
=

√
πh̄

3sv3
ln

1
θ∗

, (3.39)

where the domain of integration is from −∞ to +∞ for s = +1, and from −i∞ to +i∞ for s = −1.
Collecting all results in the expression for the wavefunction, Eq. (3.31), we obtain the result

Ψ(a0) = Cs(θ∗) ∑
ε=±1

1√
ε

exp
[
εs

2v3

h̄λ2

(
1− (λa0)

2) 3
2
]

a
1
8
0
(
1− (λa0)2

) 1
4

(1 +O(h̄)) , 0 < λa0 < 1 , (3.40)

where

Cs(θ∗) = α
√

iπ
( πh̄

3sv3

) 1
4

exp
[
−s

2v3

h̄λ2

]( λ

θ∗

) 1
8

(3.41)

is a regulator-dependent coefficient, which is irrelevant once Ψ(a0) is normalized or when we discuss relative probabilities.
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Field Redefinitions. Let us now discuss the issue of field redefinitions. As we have already remarked, they leave the classical action
invariant. They can be thought of as reparameterizations of the target space. Let us consider such a field redefinition

a = A(q) ⇐⇒ q = Q(a) , (3.42)

where Q = A−1 is an invertible function defined for a > 0. The field q(τ) satisfies the following fixed boundary conditions

q(1) ≡ q0 = Q(a0) , q(0) = Q(0) . (3.43)

The fluctuations around the instanton solutions satisfy

δa = A′(q̄ε)δq +O((δq)2) , where q̄ε = Q(āε) , (3.44)

where a prime denotes a derivative.
At the quantum level, the path integral measures Da and Dq will not be equivalent in general, since they will be related by a

non-trivial Jacobian. As a result, we can define a quantum wavefunction, as in Eq. (3.17),

Ψ̃(q0) = ∆FP

∫ +∞

0
d`
∫

q(0)=Q(0), q(1)=q0

Dq e−
1
h̄ S̃E[`2,q] , (3.45)

based on the gauge invariant path-integral measure Dq. The tilde action satisfies

SE[`
2, a] ≡ S̃E[`

2, q] . (3.46)

Following similar steps as before, we may calculate Ψ̃(q0) in the semi-classical limit to get [17]

Ψ̃(q0) = C̃s(θ∗) ∑
ε=±1

1√
ε sign(Q′)

exp
[
εs

2v3

h̄λ2

(
1− (λa0)

2) 3
2
]

a
1
8
0 |Q′(a0)|

1
4
(
1− (λa0)2

) 1
4

(1 +O(h̄)) , 0 < λa0 < 1 , (3.47)

where C̃s(θ∗) is a regulator-dependant coefficient

C̃s(θ∗) = α
√

iπ
( πh̄

3sv3

) 1
4

exp
[
−s

2v3

h̄λ2

]( λ

θ∗

) 1
8
∣∣∣Q′( sin θ∗

λ

)∣∣∣− 1
4

. (3.48)

The wavefunction can also be expressed in terms of q0. The expression is

Ψ̃(q0) = C̃s(θ∗) ∑
ε=±1

1√
ε sign(A′)

exp
[
εs

2v3

h̄λ2

(
1− (λA(q0))

2) 3
2
]

A(q0)
1
8 |A′(q0)|−

1
4
(
1− (λA(q0))2

) 1
4

(1 +O(h̄)) . (3.49)

We conclude that there are infinitely many prescriptions to define the “ground state” wavefuction. In the next section we will
show that these yield identical observable predictions.

4. WHEELER-DEWITT EQUATION AND UNIVERSALITY
For each choice Dq, the corresponding ground-state wavefunction satisfies a Wheeler-DeWitt equation. To see this let us first note
that the path integral of a total functional derivative must vanish

0 =
∫ DN

Vol(Diff[N2])

δ

δN(x0)
eiS̃[N2,q] , for all x0 . (4.50)

In this formula, S̃ is the Lorentzian action expressed in terms of the field q and corresponding to the classical Lagrangian

L̃(N, q, q̇) = 3v3

(
− A(q)A′(q)2

N
q̇2 + NṼ(q)

)
. (4.51)

Using this expression, it is easy to see that Eq. (4.50) further yields the constraint identity

0 = −i
∫
C

DNDq
Vol(Diff[N2])

H̃
N

∣∣∣∣∣
x0

eiS̃[N2,q] , (4.52)

where

H̃ = N
(
− 1

12v3

π2
q

AA′2
− 3v3Ṽ

)
(4.53)
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is the classical Hamiltonian. Here, πq is the momentum conjugate to q given by

πq =
∂L̃
∂q̇

= −6v3
AA′2

N
q̇ . (4.54)

The implication of the constraint identity is the vanishing of all matrix elements of the quantum Hamiltonian divided by the
lapse function. Equivalently, the quantum Hamiltonian (divided by the lapse function) must annihilate all physical states. The
corresponding wavefunctions must satisfy the Wheeler-DeWitt equation.

As usual, the canonical quantization of the classical expression for H̃/N can be obtained by replacing

q −→ q0 , πq −→ −ih̄
d

dq0
, (4.55)

which satisfy the canonical commutation relation [q, πq] = ih̄. However, because the first term in the classical expression of H̃/N
involves a product of functions q and πq, there are ordering ambiguities in constructing the quantum operator. These ambiguities
are induced in the precise form of the Wheeler-DeWitt equation. They can be parameterized in terms of two functions of q, ρ̃ and
ω̃, as follows [17]

H̃
N

Ψ̃C ≡
h̄2

12v3

1
AA′2

[
1
ρ̃

d
dq0

(
ρ̃

dΨ̃C
dq0

)
+ ω̃Ψ̃C

]
− 3v3ṼΨ̃C = 0 , (4.56)

where ΨC denotes a generic solution. Setting
ΨAC (a0) ≡ Ψ̃C (Q(a0)) , (4.57)

we may alternatively write the above equation in terms of the scale factor as

H̃
N

Ψ̃C ≡
HA
N

ΨAC ≡
h̄2

12v3

1
a0

[
1

ρA

d
da0

(
ρA

dΨAC
da0

)
+ ωAΨAC

]
− 3v3VΨAC = 0 ,

where ρA(a0) =
ρ̃(Q(a0))

|Q′(a0)|
, ωA(a0) = ω̃(Q(a0)) Q′(a0)

2 . (4.58)

We can lift the ambiguity in the form of the Wheeler-DeWitt equation by imposing that the ground-state wavefunctions have
to satisfy it. Indeed, the generic solutions at the semi-classical can be obtained by applying the WKB method [30], which leads to
[17]

Ψ̃C (q0) = ∑
ε=±1

NCε

exp
[
εs

2v3

h̄λ2

(
1− (λA(q0))

2) 3
2
]

|ρ̃(q0)|
1
2 A(q0)

1
2 |A′(q0)|

1
2
(
1− (λA(q0))2

) 1
4

(1 +O(h̄)) , 0 < λA(q0) < 1 , (4.59)

where NCε are two integration constants. Comparing with Eq. (3.49) we find ρ̃,

ρ̃(q0) = A(q0)
− 3

4 |A′(q0)|−
3
2 . (4.60)

Notice that the unknown function ω̃ is absorbed in O(h̄) terms, and so it cannot be determined at the semi-classical level. The
expression for ρA is

ρA(a0) = a−
3
4

0 |Q′(a0)|
1
2 . (4.61)

Both ρ̃(q0) and ρA(a0) are positive for 0 < λa0 < 1. The values Nε of the mode coefficients NCε that select the corresponding
ground-state wavefunction are given by

Nε =
1√

ε sign(Q′)
. (4.62)

Quantum equivalence at the semi-classical level. A natural question that arises is whether different wavefunction prescriptions based
on the path integral measuresDq, and the corresponding Wheeler-DeWitt equations, define different quantum gravity models with
same classical limits. The answer to this question is negative. The reason is that all these prescriptions yield the same observable
predictions at the semi-classical level.

Indeed to obtain probability amplitudes, we need to define a suitable inner product in each Hilbert space. This takes the form

〈ΨA1, ΨA2〉A =
∫ +∞

0
da0 µA(a0)ΨA1(a0)

∗ ΨA2(a0) , (4.63)

for some real positive measure µA.
Based on the form of the inner product, we obtain the following identity

〈
ΨA1,

HA
N

ΨA2
〉
=
〈H†

A
N

ΨA1, ΨA2
〉
+

h̄2

12v3

[
ρA

(
µA

a0ρA
Ψ∗A1

dΨA2
da0

− d
da0

( µA
a0ρA

Ψ∗A1

)
ΨA2

)]+∞

0
, (4.64)
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where integration by parts gives

H†
A

N
ΨAC ≡

h̄2

12v3

1
a0

[
a0
µA

d
da0

(
ρA

d
da0

( µA
a0ρA

ΨAC
)
+ ωAΨAC

]
− 3v3VΨAC . (4.65)

Imposing hermiticity of the Hamiltonian gives rise to a differential equation, which determines the measure µA in terms of ρA [17]:

µA(a0) = a0 ρA(a0) . (4.66)

Furthermore the Wheeler-DeWitt equation ensures the vanishing of the boundary term in Eq. (4.64).
It follows that at the semi-classical level, the probability amplitudes

√
µA ΨAC are universal, since

√
µA(a0)ΨAC (a0) = ∑

ε=±1
NCε

exp
[
εs

2v3

h̄λ2

(
1− (λa0)

2) 3
2
]

(
1− (λa0)

2) 1
4

(1 +O(h̄)) , 0 < λa0 < 1 . (4.67)

This universality relation can be extended also for λa0 > 1 [17]. So all probabilities and relative probabilities are independent of
the choice of the path integral measure Dq, at least at the semi-classical level.

An important consequence however is that none of the solutions of the Wheeler-DeWitt equation is normalizable. Indeed by
examining the large a0 behavior of these functions, we can infer that |

√
µA(a0)ΨAC (a0)|2 scales as 1/a0 in this limit, giving rise to a

logarithmically divergent norm. So at best we can use these wavefunctions to define relative probabilities, in terms of ratios of the
probability densities evaluated at different points of minisuperspace in this model. It would be interesting to extend the analysis to
more realistic cases, in the presence of matter, in order to see if normalizable wavefunctions, based on the no-boundary proposal,
can be constructed. Interesting attempts to extract observables in quantum cosmology includes Refs. [13, 31, 32, 33, 34].

5. CONCLUSIONS
In this work we have considered the Hartle-Hawking wavefunction for spatially closed universes, with positive cosmological
constant Λ > 0. We focused on the simpler minisuperspace version, considering homogeneous and isotropic universes. The system
can be seen as a non-linear σ-model with a line segment for the base and a one-dimensional target space parameterized by the scale
factor. The gauge fixing of time reparameterizations is achieved by integrating over the proper length of the line-segment base,
introducing the necessary Faddeev-Popov determinant, which turns out to be trivial, and using gauge invariant measures for the
scale factor path integral. The reparametrizations of the scale factor, that is the coordinate of the target space, yield different gauge
invariant measures and path integrals, but the corresponding Hilbert spaces are equivalent, at least semi-classically.
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